Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396982

RESUMO

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Sumoilação , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citomegalovirus , Mutação , Sumoilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos
2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047546

RESUMO

S737F is a Cystic Fibrosis (CF) transmembrane conductance regulator (CFTR) missense variant. The aim of our study was to describe the clinical features of a cohort of individuals carrying this variant. In parallel, by exploiting ex vivo functional and molecular analyses on nasal epithelia derived from a subset of S737F carriers, we evaluated its functional impact on CFTR protein as well as its responsiveness to CFTR modulators. We retrospectively collected clinical data of all individuals bearing at least one S737F CFTR variant and followed at the CF Centre of Tuscany region (Italy). Nasal brushing was performed in cooperating individuals. At study end clinical data were available for 10 subjects (mean age: 14 years; range 1-44 years; 3 adult individuals). Five asymptomatic subjects had CF, 2 were CRMS/CFSPID and 3 had an inconclusive diagnosis. Ex vivo analysis on nasal epithelia demonstrated different levels of CF activity. In particular, epithelia derived from asymptomatic CF subjects and from one of the subjects with inconclusive diagnosis showed reduced CFTR activity that could be rescued by treatment with CFTR modulators. On the contrary, in the epithelia derived from the other two individuals with an inconclusive diagnosis, the CFTR-mediated current was similar to that observed in epithelia derived from healthy donors. In vitro functional and biochemical analysis on S737F-CFTR expressed in immortalized bronchial cells highlighted a modest impairment of the channel activity, that was improved by treatment with ivacaftor alone or in combination with tezacaftor/elexacaftor. Our study provide evidence towards the evaluation of CFTR function on ex vivo nasal epithelial cell models as a new assay to help clinicians to classify individuals, in presence of discordance between clinical picture, sweat test and genetic profile.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Adulto , Humanos , Adolescente , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/diagnóstico , Estudos Retrospectivos , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Mucosa Nasal , Linhagem Celular , Mutação
3.
J Cyst Fibros ; 22(4): 680-682, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088636

RESUMO

We report here how the triple combination of drugs elexacaftor/tezacaftor/ivacaftor (ETI) alters the balance of the de-novo synthethic pathway of sphingolipids in primary cells of human bronchial epithelium. The treatment with ETI roughly doubles the levels of dihydrosphingolipids, possibly by modulating the delta(4)-desaturase enzymes that convert dihydroceramides into ceramides. This appears to be an off-target effect of ETI, since it occurs in a genotype-independent manner, for both cystic fibrosis (CF) and non-CF subjects.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Ceramidas , Genótipo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Benzodioxóis , Aminofenóis , Mutação
4.
J Cyst Fibros ; 22(3): 525-537, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36543707

RESUMO

BACKGROUND: Cystic fibrosis is caused by mutations impairing expression, trafficking, stability and/or activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The G1244E mutation causes a severe gating defect that it is not completely rescued by ivacaftor but requires the use of a second compound (a co-potentiator). Recently, it has been proposed that the corrector elexacaftor may act also as a co-potentiator. METHODS: By using molecular, biochemical and functional analyses we performed an in-depth characterization of the G1244E-CFTR mutant in heterologous and native cell models. RESULTS: Our studies demonstrate that processing and function of the mutant protein, as well as its pharmacological sensitivity, are markedly dependent on cell background. In heterologous expression systems, elexacaftor mainly acted on G1244E-CFTR as a co-potentiator, thus ameliorating the gating defect. On the contrary, in the native nasal epithelial cell model, elexacaftor did not act as a co-potentiator, but it increased mature CFTR expression possibly by improving mutant's defective stability at the plasma membrane. CONCLUSIONS: Our study highlights the importance of the cell background in the evaluation of CFTR modulator effects. Further, our results draw attention to the need for the development of novel potentiators having different mechanisms with respect to ivacaftor to improve channel activity for mutants with severe gating defect.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminofenóis/farmacologia , Benzodioxóis/farmacologia , Mutação
5.
Cells ; 11(12)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741067

RESUMO

BACKGROUND: Cystic Fibrosis (CF) is a genetic disorder affecting around 1 in every 3000 newborns. In the most common mutation, F508del, the defective anion channel, CFTR, is prevented from reaching the plasma membrane (PM) by the quality check control of the cell. Little is known about how CFTR pharmacological rescue impacts the cell proteome. METHODS: We used high-resolution mass spectrometry, differential ultracentrifugation, machine learning and bioinformatics to investigate both changes in the expression and localization of the human bronchial epithelium CF model (F508del-CFTR CFBE41o-) proteome following treatment with VX-809 (Lumacaftor), a drug able to improve the trafficking of CFTR. RESULTS: The data suggested no stark changes in protein expression, yet subtle localization changes of proteins of the mitochondria and peroxisomes were detected. We then used high-content confocal microscopy to further investigate the morphological and compositional changes of peroxisomes and mitochondria under these conditions, as well as in patient-derived primary cells. We profiled several thousand proteins and we determined the subcellular localization data for around 5000 of them using the LOPIT-DC spatial proteomics protocol. CONCLUSIONS: We observed that treatment with VX-809 induces extensive structural and functional remodelling of mitochondria and peroxisomes that resemble the phenotype of healthy cells. Our data suggest additional rescue mechanisms of VX-809 beyond the correction of aberrant folding of F508del-CFTR and subsequent trafficking to the PM.


Assuntos
Fibrose Cística , Aminopiridinas , Benzodioxóis , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epitélio/metabolismo , Humanos , Recém-Nascido , Mitocôndrias/metabolismo , Proteoma/metabolismo
6.
Cell Mol Life Sci ; 79(4): 192, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35292885

RESUMO

The advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations. Using CFBE41o- cells expressing F508del-CFTR, we provide mechanistic evidence that targeting the E1 ubiquitin-activating enzyme (UBA1) by TAK-243, a small molecule in clinical trials for other diseases, boosts the rescue of F508del-CFTR induced by CFTR correctors. Moreover, TAK-243 significantly increases the F508del-CFTR short-circuit current induced by elexacaftor/tezacaftor/ivacaftor in differentiated human primary airway epithelial cells, a gold standard for the pre-clinical evaluation of patients' responsiveness to pharmacological treatments. This new combinatory approach also leads to an improvement in CFTR conductance on cells expressing other rare CF-causing mutations, including N1303K, for which Trikafta is not approved. These findings show that Trikafta therapy can be improved by the addition of a drug targeting the misfolding detection machinery at the beginning of the ubiquitination cascade and may pave the way for an extension of Trikafta to low/non-responding rare misfolded CFTR mutants.


Assuntos
Aminofenóis/administração & dosagem , Benzodioxóis/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Indóis/administração & dosagem , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Pirrolidinas/administração & dosagem , Quinolonas/administração & dosagem , Sulfetos/administração & dosagem , Sulfonamidas/administração & dosagem , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Deleção de Sequência
7.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328596

RESUMO

Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Alelos , Aminofenóis , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Combinação de Medicamentos , Humanos , Indóis , Mutação , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
8.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769402

RESUMO

Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Brônquios/efeitos dos fármacos , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Humanos
9.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067708

RESUMO

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Células Epiteliais/metabolismo , Humanos , Indóis/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/metabolismo , Piridinas/metabolismo , Pirrolidinas/metabolismo , Quinolinas/farmacologia
10.
Biology (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805545

RESUMO

Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. Deletion of phenylalanine at position 508, p.F508del, the most frequent mutation among CF patients, causes a folding and traffic defect, resulting in a dramatic reduction in the CFTR expression. To investigate whether the direct application of bicarbonate could modify the properties of the airway surface liquid (ASL), we measured the micro-viscosity, fluid transport and pH of human bronchial epithelial cells monolayers. We have demonstrated that the treatment of a CF-epithelia with an iso-osmotic solution containing bicarbonate is capable of reducing both, the ASL viscosity and the apical fluid re-absorption. We suggest the possibility of design a supportive treatment based on topical application of bicarbonate, or any other alkaline buffer.

12.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098269

RESUMO

Cystic fibrosis (CF) is a genetic disease characterized by the lack of cystic fibrosis transmembrane conductance regulator (CFTR) protein expressed in epithelial cells. The resulting defective chloride and bicarbonate secretion and imbalance of the transepithelial homeostasis lead to abnormal airway surface liquid (ASL) composition and properties. The reduced ASL volume impairs ciliary beating with the consequent accumulation of sticky mucus. This situation prevents the normal mucociliary clearance, favouring the survival and proliferation of bacteria and contributing to the genesis of CF lung disease. Here, we have explored the potential of small molecules capable of facilitating the transmembrane transport of chloride and bicarbonate in order to replace the defective transport activity elicited by CFTR in CF airway epithelia. Primary human bronchial epithelial cells obtained from CF and non-CF patients were differentiated into a mucociliated epithelia in order to assess the effects of our compounds on some key properties of ASL. The treatment of these functional models with non-toxic doses of the synthetic anionophores improved the periciliary fluid composition, reducing the fluid re-absorption, correcting the ASL pH and reducing the viscosity of the mucus, thus representing promising drug candidates for CF therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Ionóforos , Mucosa Respiratória/metabolismo , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Células Epiteliais/patologia , Humanos , Transporte de Íons/efeitos dos fármacos , Ionóforos/síntese química , Ionóforos/química , Ionóforos/farmacologia , Muco/metabolismo , Mucosa Respiratória/patologia
13.
Br J Pharmacol ; 176(11): 1764-1779, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825185

RESUMO

BACKGROUND AND PURPOSE: Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease that originates from the defective function of the CF transmembrane conductance regulator (CFTR) protein, a cAMP-dependent anion channel involved in fluid transport across epithelium. Because small synthetic transmembrane anion transporters (anionophores) can replace the biological anion transport mechanisms, independent of genetic mutations in the CFTR, such anionophores are candidates as new potential treatments for CF. EXPERIMENTAL APPROACH: In order to assess their effects on cell physiology, we have analysed the transport properties of five anionophore compounds, three prodigiosines and two tambjamines. Chloride efflux was measured in large uni-lamellar vesicles and in HEK293 cells with chloride-sensitive electrodes. Iodide influx was evaluated in FRT cells transfected with iodide-sensitive YFP. Transport of bicarbonate was assessed by changes of pH after a NH4 + pre-pulse using the BCECF fluorescent probe. Assays were also carried out in FRT cells permanently transfected with wild type and mutant human CFTR. KEY RESULTS: All studied compounds are capable of transporting halides and bicarbonate across the cell membrane, with a higher transport capacity at acidic pH. Interestingly, the presence of these anionophores did not interfere with the activation of CFTR and did not modify the action of lumacaftor (a CFTR corrector) or ivacaftor (a CFTR potentiator). CONCLUSION AND IMPLICATIONS: These anionophores, at low concentrations, transported chloride and bicarbonate across cell membranes, without affecting CFTR function. They therefore provide promising starting points for the development of novel treatments for CF.


Assuntos
Bicarbonatos/metabolismo , Cloretos/metabolismo , Ionóforos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Interações Medicamentosas , Humanos , Concentração de Íons de Hidrogênio , Iodetos/metabolismo , Transporte de Íons , Potenciais da Membrana/efeitos dos fármacos , Ratos
14.
Front Pharmacol ; 9: 852, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131695

RESUMO

Cystic fibrosis (CF) is a genetic lethal disease, originated from the defective function of the CFTR protein, a chloride and bicarbonate permeable transmembrane channel. CF mutations affect CFTR protein through a variety of molecular mechanisms which result in different functional defects. Current therapeutic approaches are targeted to specific groups of patients that share a common functional defect. We seek to develop an innovative therapeutic approach for the treatment of CF using anionophores, small molecules that facilitate the transmembrane transport of anions. We have characterized the anion transport mechanism of a synthetic molecule based on the structure of prodigiosine, a red pigment produced by bacteria. Anionophore-driven chloride efflux from large unilamellar vesicles is consistent with activity of an uniporter carrier that facilitates the transport of anions through lipid membranes down the electrochemical gradient. There are no evidences of transport coupling with protons. The selectivity sequence of the prodigiosin inspired EH160 ionophore is formate > acetate > nitrate > chloride > bicarbonate. Sulfate, phosphate, aspartate, isothionate, and gluconate are not significantly transported by these anionophores. Protonation at acidic pH is important for the transport capacity of the anionophore. This prodigiosin derived ionophore induces anion transport in living cells. Its low toxicity and capacity to transport chloride and bicarbonate, when applied at low concentration, constitute a promising starting point for the development of drug candidates for CF therapy.

15.
Sci Rep ; 8(1): 2608, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422673

RESUMO

Anion selective ionophores, anionophores, are small molecules capable of facilitating the transmembrane transport of anions. Inspired in the structure of natural product prodigiosin, four novel anionophores 1a-d, including a 1,2,3-triazole group, were prepared. These compounds proved highly efficient anion exchangers in model phospholipid liposomes. The changes in the hydrogen bond cleft modified the anion transport selectivity exhibited by these compounds compared to prodigiosin and suppressed the characteristic high toxicity of the natural product. Their activity as anionophores in living cells was studied and chloride efflux and iodine influx from living cells mediated by these derivatives was demonstrated. These compounds were shown to permeabilize cellular membranes to halides with efficiencies close to the natural anion channel CFTR at doses that do not compromise cellular viability. Remarkably, optimal transport efficiency was measured in the presence of pH gradients mimicking those found in the airway epithelia of Cystic Fibrosis patients. These results support the viability of developing small molecule anionophores as anion channel protein surrogates with potential applications in the treatment of conditions such as Cystic Fibrosis derived from the malfunction of natural anion transport mechanisms.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Ionóforos/farmacologia , Animais , Ânions/metabolismo , Membrana Celular/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Ionóforos/síntese química , Ionóforos/química , Prodigiosina/química , Células Tumorais Cultivadas
16.
J Cyst Fibros ; 15(3): 295-301, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26677762

RESUMO

BACKGROUND: In CF patients, the defective ion transport causes a simultaneous reduction of fluid, Cl(-) and HCO3(-) secretion. We aimed to demonstrate that the resulting altered properties of mucus can be recovered using lumacaftor, a CFTR corrector. METHODS: The micro-rheology of non-CF and CF mucus was analysed using Multiple Particle Tracking. RESULTS: The diffusion coefficient of nano-beads imbedded in mucus from CF human bronchial epithelium was lower than in non-CF mucus, and the elastic and viscous moduli were higher. We found that 25% correction of F508del-CFTR mutation with lumacaftor was enough to improve significantly CF mucus properties. Surprisingly, also incubation with amiloride, a compound that reduces fluid absorption but might not change the secretion of HCO3(-) towards the airway surface fluid, improved CF mucus properties. CONCLUSION: CF mucus properties can be recovered by either improving the hydration of the airways or recovering Cl(-) and HCO3(-) secretion across the mutated protein treated with a corrector compound.


Assuntos
Amilorida , Aminopiridinas , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística , Muco , Mucosa Respiratória , Amilorida/administração & dosagem , Amilorida/farmacocinética , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacocinética , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacocinética , Disponibilidade Biológica , Técnicas de Cultura de Células , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Bloqueadores do Canal de Sódio Epitelial/administração & dosagem , Bloqueadores do Canal de Sódio Epitelial/farmacocinética , Humanos , Microfluídica/métodos , Modelos Teóricos , Muco/efeitos dos fármacos , Muco/metabolismo , Proteínas Mutantes/genética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
17.
J Med Chem ; 58(22): 8920-37, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26486317

RESUMO

Novel treatments for bipolar disorder with improved efficacy and broader spectrum of activity are urgently needed. Glycogen synthase kinase 3ß (GSK-3ß) has been suggested to be a key player in the pathophysiology of bipolar disorder. A series of novel GSK-3ß inhibitors having the common N-[(1-alkylpiperidin-4-yl)methyl]-1H-indazole-3-carboxamide scaffold were prepared taking advantage of an X-ray cocrystal structure of compound 5 with GSK-3ß. We probed different substitutions at the indazole 5-position and at the piperidine-nitrogen to obtain potent ATP-competitive GSK-3ß inhibitors with good cell activity. Among the compounds assessed in the in vivo PK experiments, 14i showed, after i.p. dosing, encouraging plasma PK profile and brain exposure, as well as efficacy in a mouse model of mania. Compound 14i was selected for further in vitro/in vivo pharmacological evaluation, in order to elucidate the use of ATP-competitive GSK-3ß inhibitors as new tools in the development of new treatments for mood disorders.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Transtornos do Humor/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Anfetamina/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Células CHO , Estimulantes do Sistema Nervoso Central/farmacologia , Cricetinae , Cricetulus , Inibidores Enzimáticos/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Atividade Motora/efeitos dos fármacos , Fosforilação , Relação Estrutura-Atividade , Difração de Raios X , Proteínas tau/metabolismo
18.
ACS Chem Biol ; 10(8): 1838-46, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25874594

RESUMO

Fatty acid ethanolamides such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are lipid-derived mediators that potently inhibit pain and inflammation by ligating type-α peroxisome proliferator-activated receptors (PPAR-α). These bioactive substances are preferentially degraded by the cysteine hydrolase, N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages. Here, we describe a new class of ß-lactam derivatives that are potent, selective, and systemically active inhibitors of intracellular NAAA activity. The prototype of this class deactivates NAAA by covalently binding the enzyme's catalytic cysteine and exerts profound anti-inflammatory effects in both mouse models and human macrophages. This agent may be used to probe the functions of NAAA in health and disease and as a starting point to discover better anti-inflammatory drugs.


Assuntos
Amidoidrolases/antagonistas & inibidores , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , beta-Lactamas/química , beta-Lactamas/farmacologia , Amidoidrolases/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , beta-Lactamas/uso terapêutico
19.
Biochim Biophys Acta ; 1848(1 Pt A): 105-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25306966

RESUMO

Cl⁻ channels activated by acidic extracellular pH have been observed in various mammalian cells but their molecular identity and mechanisms of regulation are unknown. The aim of this study was to analyse the acid-activated Cl- current (ICl(H)) by elucidating its functional properties and mechanisms of regulation in three different cell types: primary human bronchial epithelial (HBE) cells, neuroblastoma SK-N-MC cells and HEK-293 cells. We found that outward rectification, sensitivity to acidic pH (50% activation at pH5.15), permeability sequence (SCN⁻>I⁻>Br⁻>Cl⁻>gluconate), voltage dependence and sensitivity to blockers of ICl(H) were identical in all cells. These findings suggest a common molecular basis for ICl(H). We analysed the possible relationship of ICl(H) with members of ClC and TMEM16 protein families. By gene silencing, validated using RT-PCR, we found that ICl(H) is unrelated to ClC-3, ClC-7, TMEM16A, TMEM16D, TMEM16F, TMEM16H and TMEM16K. Analysis of possible mechanisms of regulation indicate that Ca²âº, ATP and phosphorylation by PKA or PKC do not seem to be implicated in channel activation. Instead, the inhibition of ICl(H) by genistein and wortmannin suggest regulation by other kinases, possibly a tyrosine kinase and a phosphatidylinositol-3-kinase. Moreover, by using dynasore, the dynamin inhibitor, we found indications that exo/endocytosis is a mechanism responsible for ICl(H) regulation. Our results provide the first evidence about acid-activated Cl⁻ channel regulation and, thus, could open the way for a better understanding of the channel function and for the molecular identification of the underlying protein.


Assuntos
Ácidos/metabolismo , Canais de Cloreto/metabolismo , Ativação do Canal Iônico/fisiologia , Androstadienos/farmacologia , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Canais de Cloreto/genética , Cricetinae , Cricetulus , Genisteína/farmacologia , Células HEK293 , Humanos , Hidrazonas/farmacologia , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Wortmanina
20.
J Pharmacol Sci ; 114(2): 158-67, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20962454

RESUMO

Genistein is a naturally occurring plant-derived phytoestrogen, present in the human diet, known to possess some beneficial effects. The present study investigated the effect of genistein on neuroprotection evaluated through electroencephalographic and behavioural correlates in a model of global cerebral ischemia in gerbils. Over the dose range tested, genistein (3 and 10 mg/kg), given 5 min after recirculation antagonized the ischemia-induced electroencephalographic total spectral power decrease 7 days after ischemia; fully prevented ischemia-induced hyperlocomotion evaluated 1 day after ischemia; reversed ischemia-induced memory impairment evaluated through both nest building behaviour and object recognition test; decreased malondialdehyde overproduction in the brain, evaluated 7 days after reperfusion; and fully promoted the survival of pyramidal cells in the CA(1) hippocampal subfield. The selective antagonist for estrogen receptor-ß (ERß), 4-[2-phenyl-5,7-bis(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP) given 30 min before carotid occlusion, fully prevented the neuroprotective effect of genistein at the dose of 3 mg/kg. These results demonstrate the neuroprotective effect of genistein through the activation of ERß and provide further grounds for the growing interest concerning the true potential of phytoestrogens as compounds to beneficially affect brain injury without having the disadvantages of estrogens.


Assuntos
Receptor beta de Estrogênio/metabolismo , Genisteína/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroencefalografia/efeitos dos fármacos , Gerbillinae , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA